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ABSTRACT

The efficient estimation of geoid and sea state paramefers (waveheight
standard deviation and asymmetry and scattering cross-section densif.:y) is
consideréd: tﬁe optimum processing'structufes, including maximum
likelihood estimators, and- their accuracy limits are given for a model
accounting for random surface reflectivity, sea height, and additive noise,
and a.llowing- for arbitrary radar system parameters, b_a.sed on the assumption
the received signal is a sample function of a normal random process.

The integ:.;al equaltion associated with the " Gaussian signal in
Gaussian noise" i:nference problem was solved previously iﬁ "pulse-
determined" and " threshold" cases and is here solved approximateiy-in
the quasi-stationary case of pulse resolution small rélétive to the’_returned
signal's extent and exactly in a specific case.. .It is shown that the optimum
processing is generally a rﬁixture of coherent and incoherent integrations
which may be viewed as a weighted summation of received power of the
match-filtered received data., There is a signal-to-noise ratio dependent
best pulse bandwidth; approximate and exact accuracy limits are given.

The efficient estimates are generally correlated, the most strong coupling
between géoid and asymmetry estimates and between wave height standar:i -
deviation and reflectivity estimates. A brief exemplificétion of system

design usage is given.



INTRODUC TION

.R.ada.r atltirng:tr*,,r has been pro.posed and is being used to obtain
measurements, over the sea from a satellite, of geoid and sea state
parameters which are expected to be highly useful in géodeSy, oceanography,
and meteorology both for scientific uses and applications such as traffié
routing. The accuracy required of geoid measurement for ' dynamic
6ceanography" is about 0.1 meter; since tides, currents, and wind-driven
waves cause séa surfa.lce pefturbations much greater than this and since the
reflection from th;: sea surface is 2 random phenomena, the extraction of

-~
geoid information from the " smeared' and random returned pulse
requires (at least implicitly) joint estimation of tides, -;:urrents, apd
sea state pax;ameters. It dqes not a.pi:ear possible for ﬁltim;try it‘s;elfgiib-
separate tidal, current, and geoidal variations: exterior data must be
prov-i.ded-for this, But sea state parameters 'do directly influence the
nature of the altimeter's returned signal from the sea and must be estimated,
at least implicitly, whether or not desired in themselves, in order to obtain
a good geoid estimate. ' : - o
e We-consider here the best-single-pulse joint measurement of the
_geoid paré.meter - the delay of the returned pulse from the mean sea level
(which here inseparably includes tide and current changes) - and sea state

- parameters which are here taken as the radar scattering cross-section

density, standard deviation of the wave-height distribution (which is assumed zero



mean since any nonzero mean cannot be distinguished from_ the gegid by
definition) and an asymmetry parameter accounting for the well-known
asyn_imetry of ocean waves. Such measurements can then be combined with
#djunci: data - e.g., laser measurements of orbit - to estimate the geoid;
there are well-known methods (e. g., least-séuares, extended Kalman .
filtering) to do this and they are being so used. Since it appears that
practical altimeter designs are possible that provide ac.:c'urate' measurements
even on 2 single pulse, a linear observation model in a recursive estimation
é;heme may be attractive; é general statement of a recursive estimation
problem appea.rs to be very involved, hence the emphalsis on optimizing

a single pulse's estimates.

The present discussion is an extension of [1]where estimation of geoid
only was considered. The introducltory remarks of [1] with respect to |
theoretical context and desirability of efficient design apply here é.lso and

~we adopt the mo'del‘ for the returned signal and the notation of [1}. In
particular the signal r.andom process covariance ft._m'tcti‘én in t.hé symmetric

case is

e ) )
2x | = 2%
= -T wy-— -T my-—" 1
R (), t,) Kjo ayay) ] _axp, (AT =1 -y "0 Pty oy=0) (1)
____where F is the _gpynp'léx_m_c__)dl}%_ation of‘thg transmii_:ted pulse, 'ro the delay to

ge;)id, ¢ the velocity of light, Py, the univariate p;obability density function

“of wave height which depends on the unknown sea-state parameter Gh’

- qly) =g (/<R _y) H(/cR y) where g, is the reflectivity density and H is the
) o ) .

fourth power of thé modulus of the far-field antenna pattern, both a function of -viewing

4 _ .
angle from the vertical, and K =2 (k/41TR0) (cROIZ) where k=21/A, A the



0" cTOIZ. It has been assumed

mean wavelength qf the radiated pulse and R
that the reflectivity of the sea is a random field with a reﬂectivity‘ cirensity
gix, sr) = gl(x,-y)/secy(x, y) where y(x, y) is the angle between the normal to
the gross roughness surface of the sea and the altimeter boresight dir'ection
and glix, vy} is a complex random function of zero mean- and spatially

incoherent - that is, its covariance function is of the form go(xl, yl)

6(:11-::2, yl-yz). (See Fig. 1 for the geometry of the problem.,)



For the narrow antenna patterns of interest here, go(JcRoy)'% go(O).E g
generally an unknown paramete r¥ that must be estimated along with the
“unknown geoid delay (To) and sea state parameter ch. It is then convenient

to define ql(y) = H(/ cRoy] and rewrite Eg. 1 in the form

t‘ | ) S :
R_(t),t) = gC’J_, £(8-1 30, I F(t) -E)F(t, - £} d§ (1a)
where the convolution ) N
2. _ Kc 3 £ - |
.f(g-'ro;ch ) == _[ ql(ﬂ)ph[ > (-7, :ﬂ)]d'ﬂ (2}

Note the unknown parameters (-r R h ,g ) enter via g, f(E -7 o Crhz) - which
"is denoted more brieﬂy f*(g).'

As the .received, scattered signal is mlodelled as a sample function of
a nonstationary, zero mean, complex Gaussian random pror::ess'- an
‘assumption with some theoretical and experimental suéport - whose
covariance function depends: on geoid and sea state parameters, and is
received along with additive, white t_hermal {(Gaussian) noise, the likelihood
ratio - necessafy for statistical inference - involves t};e quadratic functional
of the received data appropriate to the " Gaussian signal in Gaussian noise
problem " [1,2] having a kernel function deterfnined by an infegral equation
| t.;nat cannot, unfortunately, be sol-_ved in the generalify desired here. Tw; -
special cases were solved in rl] ,—the 'threshold" case and " pulse
detgrnﬁnéd" case, and those results are here extended to the present joint

estimation problem: however, the pulse determined case would a priori

seem to be possibly unattractive for sea state estimation.

*The relation between g, and © o’ the radar scattering cross-section density,
is o =Tg_ .



We show here that in the threshold case the pulse resolution to best
estimate sea state should be somewhat smaller than to best éstimate geoid
but still of the order of the received (smeared) pulse duration. To adopt
this rlesult is generally disquieting because there might well be 2 best
MSNR per sample" (resolution element) analogously to the diversity communication
problem, and if so, a SNR-dependent, possibly finer reéolution would be
dictated.

Therefore we are led to consider an apprbximation_ appropriate to the
case when the pulse resolution is small relative to the received pulse
dufation as‘spread by tiue antenna pattern and wave height distribution. We
are able to approxixixlately solve the required integral equation in this
"quasi-stationary' case, observe the‘structure 'of the optimum processor,

-and calculate bounds on estimation accuracy - which a;-e_ atta.ilna.blt.a_a3ymptot-
ically by maximum likelihood estimation. As an example applicatidn to altimeter
system design, there is shown to be a best pulse resolution for estimating
geoid and 'sea state, dependent upon SNR. These re‘sults\ can be used for

‘efficient altimeter system design as exemplified in f1].

Also the integral equation is solved exactly under a specific set of

assumptions; the results generally agree with the results of the guasi- .

_____ stationary approximations when the signal bandwidth (roughly-see below for
mﬁre pre<-:ise statement) is relatively large;
| Since the received signal is modeled as a samplé function of a random
L :.process, the better known theory appropriate to a signal known except for a
" set of parameters (which leads to the matched filter, etc.) is not applicable here.

For comparison, the estimate of delay and spread for a pon-random signal is

discussed in the Appendix. B .



* SUMMARY OF RESULTS

The data-dependent part of the log—likelihood ratio, which describes
the (;perations on the data Zt' te T, performed by the récgiver/_proces_sor is
[1,27 the quadratic functional
_ Q@ - % Ldtlmjf dt, Z(1,) klt,, t,) | B (3)

- - - [

where the kernel k(tl, tz) is the solution to the integral equation

’ k ’ + = - ' :
‘ ,n° ('ci tz) J.T Rs(tl,t3)k(t3,t2)dt3 Rs(tl,tz), t) t, €T (4)

T is the time during which the scattered pulse is received and will be
assumed large relative to the support of RS;. T _is the spectral density of
o _

the complex white noise.

Solutions for k. - We have already solved the integral equation (4) in

(1] in two special cases. First, in the '"threshold case™ (see f'l’] for
P

definition) of, roughly, low signal-to-noise ratio,

-1 .
which gives
K _ € Nul Ty o1 2
Q(z) » ~S= q(-t)%p, (- 5 ¢ I F(-%2(0] | (32)
 2ng =1

which can be calllculatecl by the processor shown in Fig, 2. As discussed .in .
[1] this processor perfo'rms both coherent and incoherent integration in an
‘intuitivelsr satisfying manner; since the scale of q involves g, ard Py depends
on 0, (and th.»sz.Ev..sw,marne.tir3,r parameter introduced below) these matched

h

filters will depend on sea state parameter estimates.



Second, in the " pulse determined" case (see [1] for definition) where

the radiated pulse has insufficient bandwidth to resolve the wave height and

antenna spot smearing,

kit t,) =k F(t,-7 )F(t -7) _ {4b)

where ko = a/('n + aﬂ ), 6 the energy of F and o = KJI q(y)dy. Now

k
Q(Z) ~ ;% | F-tyrzie)] > ' (3b)

¢}

which, aside from scale, agrees with the results of the.threshold case with

ll1

g(-t) (- = t} & (t) - reasonably bhecause the transmitted pulse does not
"gee the waves and antenna spot in this case. The calculation of 3b is
accomplished by the processor of Fig. 2 with the matched filters of impulse
responses q(-t) and ph(-ctIZ) omitted, Such a pfocessqr is therefore |
independent of the sea state parameters (aside from go) which is a;g advantage
if only geoid estimation is required.

We here solve this integral equation in two more cases. Thus, thirdly,

in the " quasi-stationary" case where the extent of F (after matched filtering ~

© if dispersed modulation is employed by the transmitter) is small relative

~~~yaves and antenna spot are relatively well resolved - we find that k(tl, tZ)

to the distance over which q(t) * ph(% t) varies significantly - that is, the gross

is approximable by a slowly varying impulse response kl(tl t1 t,). Thatis,

~ for each t, in a region of the order of the transmittéed pulse resolution, k

1

looks like the impulse response of a linear, time-invariant filter. Its

M quasi-stationary' transfer function is shown below fo be approximately

~ 2
R Cf, () F(w)] .
t,W0) = * 1 _
) n o+ £ 1) F ) ? el
‘ o’ x4y '




and :
f,{t)

1 ¢ 2
Q(Z)“;;JTI?(H] '_w-dt _ | (3¢)

which is a weighted sum of the received instantaneous power after matched
filtering to thé transmitted pulse. (Here B= ZTIEF/QF where QF is the bandwidth of F
which, for the specific form {3c), was assumed constant over its spectrum.)

The calculation of Q(z) is again accomplished by the processor configuration

of Fig. 3 except the matched filters q and p, are replacgd by a filtér of

impulse response f*(t)‘/[n0/5+ f*(t)] . This form of processing has in fact

been a starting point for practical designs [5]. A sketch of the weighting
function w(t) Ef*(t}- . T 1']0'/51- f*(t)]‘-1 for a crudely approximated f* is sbown

in Fig. 3 ; exact calculations are easily made for a given f .

It should be noted that w(t) is relatively broad in its extent. The weighting

function does depend on the sea state parameter estimates.

- .- The first case overlaps the second and third cases which are mutually

exclusive; taken together they lend great weight to using a processor of the



an envelope detector and filtering (incoherent integration), the exact filter
shape dependent on ijgné.l-to-noise ratio and sea state parameters, Such
a processor is eminently practical also. Again if only geoid estimation is
desi:red this filter may be omitted and satisfactory performance is practically
achievable 1] without need for sea state par.a‘mei:er estimation.

Fourthly and finally, if it is assumed that the transmitted pulse

spectrum is constant over its bandwidth and that E ah is the Fourier transform

bf a rational function, an integral equation equivalent to (4) can be solved
exactly. The method of solution is well known and has been reduced to
routine calculation which gets sufficiently involved to impede easy under-

standing. A rélatively simple exponential fprin for 'ci"c‘p'h was assumed and the

calculations perfo-rmed to find k exactly (Eq. 25 below). It can be expected
-

in practice that the system parameters will be such (see below) that the
resulting processor has the realization shown in Fig. 2 where the filters

éand ph are reialaced by a filter transfer function
k(w) = k Aol cuca (3d)
" s 2 -1 ooz :
Note that its bandwidth is about B ~ = (1’]0/20!8 ¢)' " where ¢$ is a measure
of the spread or smear of the returned pulse: this can be seen to be in

agreement with the result under the quasi-stationary case.

Maximum likelihood estimates. - By definition the maximum likelihood

) ._._,e.s.tii'nates ('"MLE?'s') are those yalues of the unknown parameters that

me;.ximize the likelihood raFio or, equivalently, the natural logarithm of the
likeiihood ratio which here has the .form [-%2+ Q(z)]; §is independent of the
data and here can be shown [ 1] to be independent of geoid parameter To rbut

wls

generally will depend on the sea state parameters.* Thus the maximum

*Finding useful '"closed' forms for 2corresponds in difficulty to find k, the

kernel of Q.



likelihood esﬁima..te of 'ro is easily seen to be found by choosing the time of max-
imum output of the low pass filter for ény and all of the special cases discussed.
Said ifilter must be adjusted over a trial set of sea state parameters to
maximize the output: in principal - but not necessarily practically - this may
be done " in parallel' on one pulse return.

Necessary conditions for the MLE's are found, of course, by setting the
derivatives of the log-likelihood ratio with respect to each unk-nown parameter
equal to ze-ro. We show below that in the quasi-stationa.ry case and when F.

has constant spectrum over its bandwidth QF’ that these conditions are

T (t) /0, |z _ ‘
0= j dt~ — L 5 { t - [n0/s+ £*(t)]} . (5)
T [n /B+i )] BB ,.

These likelihood equations can have solutions for each stationary point including -

the true maximum and are therefore meaningful in suggesting processors use-

~

ful after initial acquisitions to a close approximation of the estimates 0 to

the true values 96'5(91’ ez, 63, 94) = ('ro, Uh . go, 94), 9‘4 the asymmetry

.Pa;é.meter. The fun.c:.tions vi(t) = (éf;‘ B.E;i)r 'n;./.B;I- f;(t)rj -2 ma.;-r be..régarded ;.‘s.
weighting functions and afé sketched in Fig. 4.for a crude approximation to
..a typical {, when Py is s-ymrn'etric. S
--——8uch-likelihood equations have often belen used to suggesf feedback
structures to fiﬁd estimates by operating on a sequence of received pulses and
driving certain error signals to zero. For example, the form of vz(t)
suggests the use of two time ' gates', one with the weighting function ?qual

to vz(t) for -0 <t < o and the other with the weighting function equal to the



the negative of vz{t) for 0 <t < 6+ ¢. Kach gate output -Weighte§
:.'mstantaneous power-is summed and the difference formed as an efror signal
which rea.dju;sts the position of the gating pair. The integral of vz(t) times
[no/‘B+ f,(t)]is computed separately and applied as a bias to the difference.
Similarly for v, and v_.

1 3

Performance. - It is well known | 47 that the covariance matrix of

efficient estimates - those unbiased estimates of minimum po-ssible error
va.rria.nce; “;hich are, when they exist, MLE's and whose performance is
achieved aSymptoticaliy by MLE's -~ is the inverse of the matrix C of

) elernents cu =- g B Ln A(z)/BB 9 } where A(z) is the likelihood ratio
~and { @, ] the unk_nown parameters to be estimated. Here the fec. J} can be
expressed in an integral involving RS and k (eq. 19 belqw,. e.g.). For

example, in the quasi-stationary case we have the approximation.

_ 3. o
< _"'ae £,(t) - 0, £,(6) dt
_ L[ 3 |
- J.ae‘f*(w) 7o) 7 Jw)dw, (6)

T = ' P 2: =
Here BF/('n.o/B-l- gof(o)) and we have assu.med | F (w)] =2m EF!QF B

for o] < QFIZ and zero otherwise (B_, = QFIZTT }); also we have made a

F
certain approximation with regard to the general shape of f* - see below, -
. Here the Fourier transfc-:r-m of f* is “?:k(w) =. goK gl(w)cph[w/(CIZ)] .

exp(_;iw 'I'O), where cph is the univf':triate characte.ristic function (thé Fourier
traﬁsform of phl) of the gross wave height.

An often used [4] approximation to the gross wave distribution is

normal; but it is usually still better approximated by incorporating a



parameter that accounts for the observed asymmetry. This is convelniently

done by using a truncated Gram-Charlier series rsj. i
_chzngz

- . . 3
tph(g) = e (1-1B4a§ )

3
when 943. = E{h™} /3 is proportional to the (assumed small) third moment

of the gross wave height distribution; note © = 0 if p‘h is symumetric.

4z

‘We can now compute the {cij} and invert C to find the desired

covariance matrix; its diagonal elements are the error variances of the

ke

. . £ %k ko 3 .
efficient estimates ('TO S - 94 )(64—B4al(c/2) , 0= OI}_I(C‘IZ) ):

‘ %, 1 1 1
Vax:{ T'o } = qg > . l-p 5 M(l) ’ (7&)
(o} 14
k] ] 1 ' .-
o 14
* 1 1 1
Var{o }= -z 5° "3 , . - (7¢)
4 1-023 o M(2)
and 5
Varfg *}=—1_ .1 _ o (74)
e a 2z | 2 M@’ o
go 23 , r
where
2
p. 2 = M(2) (Te)
14 MOLM(3)'’
2 .
2__= M(1) -
P23 ~ M{0)M(2) ° (71)
and '
_ 1 2k, ~ 2 :
M(K) = ij 1T aw : (7g)

T(w) = K’é'l(wmh(w/(c/z))le = o° The correlation coefficient of the
4a
efficient estimates of geoid delay 'ro and asymmetry parameter 94 is 04

the correlation coefficient of the efficient estimates of gross wave height



‘standard deviation U.-a'nd sea reflectivity dens_ify g, is> 0537 all other correla.tions ‘
are ?ero to this first order (in 843) approximation; also 914’a_.nd ﬂ23 are
_independent of 943_ to first order..
Consider, for example, thé error varianpe of the efficient estimate

To* of the delay 'ro to the geoid. Itis uncorrela£ed with the efficient

estim'ate_ go* of reflectivity density though, because additive noise is

present, its magnitude depénds on the true reflectivity density g this is
agreeable. It is also uncorrelated with the efficient est:imate 0* of the
étandard deviation o of the gross wave height distribution - 2 second

moment - though its magnitgde depends on this measure of (sy'rﬁmetric}

spreéd as is agree:able be:cause greater spreading means greater returf}ed
energy which, if processed proPeriy (as it is), should efmhance the geoid
- estimate, Finally it is correlated with the efficient estimate of th%: asymmetry
pa.ralmeter: efrors in e‘stirﬁating the asymmetry of the gross wave height
distribution would ';lae expected to lead to geoid loca.tion erro;-s. Finally, we

may write M(l) = szﬂfz where Qf- is interpretable as a radius of gyration

" measure of the bandwidth of f ( provided the centroid of | ?]2 is zero):
this too is agreeable - though not with the superficial thought that the

bandwidth of ¥, the transmitted modulation, determines geoid measurement .
accuracy.

. . L. . = *

The correlation between the efficient estimates ¢ and B, is also
agreeable: increased total energv.,r is scattered by increasing either ¢ or

- B, -8

-~ 2 ~ 2' "
More specifically, assume Vg (w )| = | q(O)lzexp(-qa wz) so that



]?(w )\2 = al.zexp(-wzlzvz) where ozl_EKﬁl(O)]' and vez [2(02+ q,_z)]'1

1

' 2 -
Then one calculates p 2 = 9/15 and p232 = 1/3, leading to (1-p ) " =15/6

_ i4
and (1- 0232]—1 = 3/2, these being the factors by which the various efficient

14

estimates' error variances are increased by their being correlated. 0{,
to say it another way, the variance of the geoid delay efficient estimate
(e.g.) is increased by 250% by the lack of knowledge of asymmetry. Further,

after choosing an optimal pulse bandwidth as discussed below,

#0210 Mo N1 :
Var{'ro } W’Z ( goala ) 32 - | a).
Var{ .*}= 2 o ) ! ‘ (8b)
R S 3Th/-é‘ v g o € .';2’6 ’ ' .

) 1 F
Va.r£0 }= TT/'Z_( 08 ) S . (8c)
o] . . B ¢ & )
and "

Var'{go*}=_ e ( ) B (84)

' w2 .

€o
Because of the aforementioned approx1mat1on to the shape of f*, it

was of interest to compu£e the {cij] for a speéiﬁc, reasonable f* with

a symmetric gross wave height distinction - still under the quasi-stationary
approximation and the s_p_gcifig 'reasonable assumption of the shape of "f'!
The resuits are given below -(eqs. 22), the result of tedious residue
integrations; fqr comparison the approximate forms (Eq. b6) are also
evaluated with results shown in Eq. 23. (Both 22 and 23 result after an
optimum choicé of signal bandwidth QF - discussed below.) We see that

agreement is very close.

S



Also derived below are the error variances of the efficient estimators
‘ | , _
of geoid delay To and gross wave height spread Uh in the threshold case.
For example, for a normal gross wave height distribution, ro‘ constant

~2

over its spectrum, and Jq(u)] 2= 1q (0)expi- ¢1u2/2)12, then setting V

fll

8%2/c:2 + 4512 and 2 = vQ_, we find

F
: nv 2 ' :
* 0 1
var{t }= . — ' (9a)
o ° ( ZgocxlEF ) ru(a.)
and :
AVar{chz} ( ﬁov )2 | 1 ~ o
: : = . — . ' {9b)
(el 28,9 % p 1 T22) q

The forms ru(é‘) and rzz(g) are graphed in Fig. 6 as a function of a.

* £
The efficient estimates T and g ,2

h are uncorrelated - as is proved true
o :

for any symmetric P
. Finally we recall from [1] the variance of the efficient geoid Helay

*
estimate 'ro in the pulse determined case is

. M. nt2g «&) o,

*

Var{'i‘ } = o © Oa.l F . 1 ‘ -
o 2

F

5 (20)
g 0,8 A

where AF is the radius of gyratibn measure of the bandwidth of F. (When

7 |F| is constant over its support then be= D.F/Z./3 .)



III, APPLICATIONS

Modulation bandwidth. - One of the fundamentally interesting questions

about sysfem design is the choice of transmitted pulse bandwidth to minimize

the estimation error variances,

Taking up first the quasi-stationary case where the bandwidth Q F of

the pulse F is such that the " smeared'' returned pulse f is highly resolved,

we note - Egs. 7 - that (Q_, enters only through J and each of the error

¥

variances are inversely proportional to < : thus QF should be chosen to

maximize (L = BF/H]0 BFIBF + gof[O)] where B_ = oFlzn.. It is easily

seen that the maximizing BF is

gfé g
. oo F -
Bp = ¢ (11a)

1 Q

and. _

e .
max @ = Tf—l'%— . ' (12)
B *8o o o

L F
To interpret this result note that, from Eq. 1lb, the mean .power of the

 received signal at time t (said mean power will slowly vary in this quasi-
. L2 ‘ |
stationary case) is o (tl) = Rs(tl,tl) = f*(tl) E‘,F » Where ﬁF is the energy of

the complex modulation {which is twice the energy of the rea] pulse modulation);

also the mean power of the complex noise in the bandwidth B is -
.2 ; : ‘ FOPt
on = 'nOBF : our result states that BF should be chosen so that the signal-

opt .
. .2 2 . .
| to- n01.se ratio cs (0)/0n is unity (recall we set TOE 0 for present purpose).

~ Since {(t) generally will decrease as |t | increases from 0 and since we
- hevertheless can only choose one BF' we may expect that a more exact

s corresponding to

calculation would result in a somewhat smaller B
' T opt

F

' ) 2 2
a ratio Us (0)/0n somewhat greater than unity. - .. . F e -



In fact this last is borne out by examining the results of the exact
. calculation, kEgs. Zle,‘ 21f, 21g, for the symmetric case. Each variance
depen;ié on a ‘diffe rent factor dependent ona = (1 + 3”/('214__)1/2,= only through
which {} en;:ers: a can equivalently be chosen, then, to min.imize (e.g.)
one of these three forms-call them ; (a), i= 1', 2, 3. AIt iS'easily found algebraically
that a=2 .'minimize; both Var(o*) and Var(go*) and a={3+/17)/4 =1. 8 minimizes
VarSTo*); further, a choice of a=2 increases Va..r('!'o'*) by less fhan 2%. Thus the
choice a= 2'is a very gcod one; theh_%f/QF = ‘(2‘11 f*(O)_(‘_l_F/no)IZ‘!TBF= cz (0)/0; :
. is séen to be {very nearly simultaneously) optimally 3. ” |
“This choice of a is allowable,provided,roughly, the signal-to-noise
ratio is large enough so that the quasi-stationary approximation rémains-
valid: for this we must have I/QF << @g. Since 3‘/9 =3 (f.,or a=2),

1/Q= 3/: = (3/2}('%/&3}?)9: thus, more precisely, we must have

As will be seen below, this conditién is easily met in pra:ctiC'e even for a
.satellite vehicle.

As will be seen in examples below the optimum choice of a can imply
| '-very large pulse fnodulation bandwidths. It is therefore of interest to see .
how the { < i(a)} depend on @ for a greater than the optimum a - that is,
'bandw.idthsA less tha.h the optimum bandwidth: this dependence is sketeched
in Fig. 5. To co_ﬁform_ to the quasi-stationary approximation only als below
a bound are permissible: that is, .for a given 4T o SF/T]O, since pF/g’:< <1,
only values of ({!‘I‘ra EF/ﬂo)(pF/q;) << (dTgy 8F/T'|°) are allowable - wﬁich is

to say only a2 << (41 aé‘F/no) + 1 are allowable. For example, in an application



discussed below (41TaE'F,/no} is greater than 106 so a's somewhat less than,

.—

‘ say, 300 are allowable.

We see that the error variances increase by an order of magnitude as a
increases by an order of magnitude: fortunately, roughly, a.~ (Qg )-112 50
that an order of magnitude change in a corresponds to two orders of
magnitude change in QF

The best choice of bandwuith Q in the thrleshold case is also examined:
{?F enters the error variances (Eqgs. 9) only through yll(a) andy 22(?3.),

F)

a= vQF, which are graphed in Fig. 6.

We note that the best choice of QF = é‘/;(ﬁxed G) is QF 5::14/;’: degrading

. -
only a little the accuracy of the geoid estimate and would represent a

reasonable compromise.



~2 2,2 .2 2
As v =8crh /e +¢l,andc

h is unknown and to be estimated, we

2

may have a problem unless ¢1 >> Sthlcz - that is, unless the antenna
"spot" determines U. Since, from Fig. 1, too small a bandwidth results in
serious degradation, we may wish to choose (_ =~ 4/y , , wherevy ., is

: F min min
. the minimum possible § - very likely determined praétically by the
antenna spot (scaled into time and smeared by pointing errors) as the sea

‘ 2

could be smooth (cn = 0) occassionally. Presumeably generally better

performance could be obtained by an adaptive system which utilized an initial

~estimates of o, to more optimally set D’F on the subsequent pulse,

System design, - We briefly indicate how the above results may be.
used in determining reasonable system parameters.
Recall (Eq. 22 of [1])

AcQ
.. 0O

: 3
)R]

where A is the antenna aperture area, the scattering cross-section density
2 | | '
0 =7Tg /X {(a measured and tabulated parameter), and Q depends on
o o A
aperture illumination function shapeie.g., Q = 1/6 for uniform illumination.

Also (App. HIof I) - : : S R - )
17 Ac * ‘ : :

Since q>1 decreases and ¢ increases with increasing physical antenna
aperture area A, clearly we want A as large as possible - limited by vehicle

‘size and stability as discussed in [1].



Suppose certain measurement occuracies are required of geoid and sea
state estimates. Rescaling to spatial distance instead of time extent by

settiﬁg T =R [(c/2)and 0 = ch/(r;IZ) , we have
o o
TT
C

F °h

V#r (R )" (4.

aﬁd _
n
Var (o, * = (3. 60) —5> r1+(9';c1—2—)2]20
br “n

Assﬁnie parameters T =T A= 'rrzmz, Ro = 106m, and Q = 1/6: then

14 -1

we calculate o= (3.84x1077) if A =2 cm, then ¢ ¢/2 = 25.4m. If

n /2= KT_=1.4x 10°%! then n_/a= 5.38 x 1077, Thus (Egs. 8)
i * -3 '
var (R )=1.56x10 /&
e} F

and

: * -1 2 .
Var (O‘h )= 8,03 x10 /E'/Foh -

provided that ¢ 2 <<({25. 4)27, as would be true even in the rougheét possible |
‘seas, If Var(RO:‘:) = 10-1 m. accuracy is specified then at least

- ‘ f %
=1,56 x 10 1 Joule is required, which is rather large; then VVar(o ) =

e
F h

2. 27/0hm. which of course will exceed any specified value for sufficiently

small ¢

b

I BF is chosen so that OSZ(O)/UnZ = 3, then we find BF ~ ] KMHz., an ~

-

“"ﬁn;ira‘ctically large value. But in order even to be in the fine resolution, or

" quasi-stationary case, the resolution IIBF must be small relative to

¢ = 0.17 usec, implying BF >>5,9 MHz.

Suppose a more practical bandwidth of B

P = 33 MHz, whichis a

thirtieth of the optimum bandwidth: then it is easily calculated that f;ow



a = 10. {We already saw that 2pt = 2 would be increased roughly. by

/30, near opltimum a little less.) From Fig. 5 we see that now Qll(a.) = 135
and Q Z(a) = 148, increases from the minimum values of 18 and 27, resp.,
corresponding to increases in the érror standard deviations by the factors

_ /135/18 = 2.74 and /148/27 ~2. 34, resp., which would have to be made u.p
By changing other system parameters to meet the sameISPecif-ied éccuracy‘.
This éalcqlation points out that the error standard deviations are relatively
mildly dependent on pulse moﬂula.tion b;ndwidth, within the quasi-stationary

approximation.



- It is of considerable interest to compare this "' © 7. ' B
a.chié‘lrable performance, Var(‘TO*) = (4. Sl)(‘n o'fa'BF)(Oz + ¢12} with that
a.(‘:hievable_in the " pulse-—determin;ed“ opposite extreme pulse bandwidth
QF where q is not resolved at all, namely (1), Eq. 24.b) VarA(To*) =

6(no/a8F)QF-z where (see [ 1], Eqgs. 9 and 10) QF-Z is larger than

‘(G‘Z + ¢12)_ . Thus, éet QF-Z = &’52(02 + ¢12): a general conclusion of Ml

was that, in the threshold case, & = 4)3 was optirnum,- resulting in a pulse
the;t did not quite resolve the returﬁed signal; adopting this &, we see that
-‘ 1n the puls-e deterrﬂhined case the achievable accuracy is at best approximately
@4) (n_la )0 o).

-Thus the best performance, measured by error standard deviation,

in the fine resolution extreme is only about /24/4.51 'H 2 times f_)étter than
that obtainable in the pulse :determined case, Sing:e the processing required
in the latter case is mazl-kedly simpler and a priori_ determin.e'd, whenever

only geoid estimation is desired the pulse determined case seems

markedly preferable: such design examples were considered at length in

[1].



IVv. DERIVATIONS

Quasi-stationary case. - The data-dependent part of the log-likelihood rz
which describes the operations on the data Z.t,' te T, performed by the receiver/

processor is [1,2] the quadratic functional

- Qz) = — | dt, Z(t.) | dt, z{t Ik(t ,t.) N 15
; L n«ofT 1 1 fT 2 ,2 1’%2 _ (15)

where the kernel k(tl, tz) is the solution to the integral equation

n k(). t,) + IT R, () t) Klegs £,) ey = R_(1),€)), )0t € T, “Q6)

1T is the time during which the scattered pulse is received and will be
assumed large relative to the_' support of Rs; TTD is the spectral density of

the complex white noise.



.Suppose-the support of ¥ is small relative to the distance over which

| f changes significantly: then, from (la), - - ' _ <
R (et )~ g £t - T ;0.5) F(t,-t.) | e o (17)
781" 2 CoT1 o’ h 172 -

= L06) 7 (1) t)

‘ jt.rllaere J =F+*F, * denoting convolution.

- Note that if in fact {_(t) were independent-of t then- the signal process
" would be wide sense stationary and the integral equation (iﬁjwould be. easily
| solved bjr the Fouri:er transform: k(tl, tz) becomes k(’c1 --1:2) WiAtI-x Fourier'

. ) -~ .
transform

f*'F(UJ)I . o

7 K = ~ 2
‘-_'n°+f*|F(w)[

-

(The tilda will denote Fourier transform throughout.) | . .-

This suggests a ''quasi-stationary' solution form under (17): assume

T ‘k(tl’t_:zl = 'k1 (t

1,t:1 -tz) where, Fourier transfbrmingﬁn the second argument
TEt -t
. ~ 2 o
o - ) | Foy] £
‘ —kl {tll UJ) = - : "‘18)

, ~ 2
L) | F(w)l



| It may be verified by substitution into (16.3;),‘ using the aséumed slow_variati;n
- of f_ with respect to F, that (18)is an approximate solution.
‘:If is to be expec?ed, m view of the discussion in (1], thatif disPefsed
transmitted puises are used, the fir-st s'tep-upon réception would.be pulse
compression and this data is the-n available for further processing. If the ‘

compressed pulse support is small relative to the distance over which g -

changes, we can then reasonably apply the results of this case.
Realization - The qua.dra.tic functional Q(Z) given by Eq.iS can be

- written in a more special form now usmg Eq. 18

f (t)IF(w)I
tN
Q) = — j dtszdme‘ Z_(®). = .
2"“ T+ ] Fo)l
(ZT(t) = Z{t), te¢ T, and zero otherwise. ). Suppose If[w}[ ZTI‘E‘, / E B,

' '_|u_|< 01/2, and zero otherwise; then

il | £,(0
9;77), -—; jT at Z{H) (Z,*D,). _—_HOIBH*(t)

o

Where h = 1 UJ‘< QFIE and 0 otherwme. It is 11ke1y ‘the or1g1na11y received
data. is a]ready approx1mate1y so filtered and hence Z ad Z *h if, e.g.,
. filtering matched to the transmitted pulse had already been done then

.8 ;_Z.é#ht;—~with this as‘sumption

A | 2 Y : ) . S L
Zy = — Z . — ' S :
SN '[I‘- 120l e S ~05)
. o] o .

B which is a weighted sum of the received instantaneous power after filtering

matched to the transmitted pulse, _



By definition the maximum likelihood estimator (" MLE") of the unknown

Y = -
parameter 0 is that 6 maximizing the log likelihood ratio which here has

the form {—E +0(Z)} where [ 2, p. 177] presently we have

-

3 e 1p -

30. 2 " q JI Roltpt) 5% ae k(t tp)dtdt, 3
i o TT
| 1

o '=moj dtI dwff, (t)g(w)+n 7.2 k(t w).

' The necessary conditions for the MLE's 9 are found by setting the derivative
N B/BB of the log likelihood ratio equal to zero:
af*(t)/aei lz |

| . %
0= | dt . - In /+€ ()] .
T [n /8+ f*(t)J?' | { BB, ° )

It is well known [4] that the correlation matrix of
efficient estimates - those unbaised estimates of minimum possible error
variance whose performance can be achieved asymptotically by MLE's - is

thé inverse of the matrix C of elements
2

Cij =-E {zeaiae. '-‘?‘“Mz)}
. r J C

[

‘where A(z) is the likelihood ratio and 6= (91. vees BM) is the vector of
unknown parameters. In the present pfoblem (Gaussian signal in white
Gauss_ian noi._se) it mayube shown [2, p. 179 et. f.] that

SRR r' . 3 3 A T
©57 0 J at, ] a, 28, s (1) o8, klopfpl e



: 9 - = ha f variables

: _.f*(tll 3 ttl FZ) and k(.tl'tz) kl(tl ’c1 -t_): the change o
(T étl-tz, u= ti) followed by a Fourier transform on the T variable gives the
: repre_senta.tions ﬁs(t,w) = f*(t) J(w)and kl(t,‘w) as given by Eq. (5),

: ‘y1e1d1ng the form

Y k(t,w
Cij 21111 I dt.[d‘” 36, 'Lf “’5”‘")} 2, { £, W) }
. ‘ A o
where ?{w) = IF(UJ)IZ. Recalling only f_ depends on 8, carrying out the
indicated differentiations gives N
| R s 2 2 3f  Ofx
. { Tt t
ci'=?111_.[ dtjdw[ el ] X
J S Y n+f(t)lF(w)| i T
To proceed assume that, reasonably, o
2ne_ /0 lw] <Q_/2 P
~ Z F i) H F H S .
|Fel® = { | =
0. s ]m]:-QF/Z , (20)

. where SF is the energy of the complex modulation (which ié twice the énergy

of the real, bandpass transmitted waveform). Then
‘o . .
(Bf.,t /aei) (Bf*t /an)

G =5 | a o %)
; doa J'r [n /8 + £,(¢)]° | -

B=2m EF' QF. We now examine the forms (20): t.hey are soméwhat.involved |
though in specific i_nstances nurn-errical liﬁtegration is straightforward.
| As an example of a useful approximation, note f, results from the .

'cc;;nvolutiﬁn of, essentially, the unvariate density function of the gross height
| varia.tion and the antenna pattern, as scaled into delay. A reasonable
approximation in the denominator of (Za)is arrived at'by noting .that, ignoring'.
the s1de10bes af the antenna pattern, we can take f (t) as '"pulse- hke
'apprommately of constant value - say g f{0) (Note (20)does not depend

on T.).
-~



. i . , . 2
- i = = / ‘ :
| Hgnce (6) becomes setting BF QFIZTr and BF.' (‘no/B + gofo)_ .

. = Tt . t
Ci Qjaei Y dt

2m J 38, 36,

RS j

| _whe.re ‘f;(w] =gngl(w) cph[lll,/(;:_IZ)Jexp(-iw To) , and Cph is the univariate character

-function corresponding to Py

!

.. Consider first finding ’the,éolvariance ‘matrix of the efficient estimates of
© -amplitude, delay, and sea state; assume the univariant distribution of the
gross waveheight is normal with zero mean and variance Gfl: then
2 2, - |
. ~ -g w f2 (c12)2 - T
f (w) = w ' ‘
f,(W)=g Kq,(w)e e
' - ~imT o o

= g, i(w) e

. " - - . B -+ .
.. Define 0 = crh/(c /2) and the vector of unknown parameters 0 = ('To, ag, go).

. Then we calculate:

. e—_. B ’ ’ B . -

11
“1z —_C._“ "o g
sz = -ngzcz .M(Zj ' .
P '023 - -dg;o M,

-..‘.'."'-'_ 7:. ' | (;33 =QmMm(0) .

o

Lo . ‘ N N ' 1 ~ 2 . 3 . . .
- Here we have defined M(k) = S JUJZk/f(w)/ dw; of course M(0) = Elf is the

as the

. - -energy of the function f and, setting M(l) EE«fQ‘f?‘ , We may interpreti Q

f



radius of gyration measure of the bandwidth of ft (provided the centroid of

|ﬂ is zero). Inverting this matrix we find the variance of the efficient

/

’ estimators: . _ o ' ‘ .
- % 1 ‘ ' ; |
Va.r('l'o ) = ———i———'—— (2la).
a go -M(1) ‘. o
V. (0#) 1 | ' - o
ar = . . (21b)
1_02 ngzcaM(Z) S
var(g®) = -1, . Z1c)
ar (g = —_ c
| ° 1% MmO

where the correlation coeficient o. of the efficient estimates of sea state and

amplitude is

) - | -
c 2 - |

2. 23 . My . ” 214d)
022633 M(2)M(0)

the efficient estimate ‘r of delay is uncorrelated w1th the other two eff1c1ent

~ estimates,
" The zero correlation between the delay and sea state efficient estimates holds

more generally. Suppose @®© 1_1(1.1;t:rh) = cph(chu): the.n the correlation is zero if and

only if the univariate distribution of the gross sea height is even. For then

acph(u)!acr— ueph'(u) and
iqg
C.. = ____9._ Iqu(w)l ‘Ph(c/z’ ? t(':/2)

12 FAYl

. t .ol " . ~ 2 ! ) . ‘ ]
First note that, as ql‘ is real, | q1| is the sum of the square of an even function

and the square of an odd function and therefore even. Second, as Py is real,



‘ cpi1 is real and even if and only if Py is even; more generally’ Re[tphcp ] is
“odd - and hence always contributes zero integral - and dw {ah Cph} is even

and hence can make C12 non-zero.

- 1 :

) We will be able to carry out the integrations

required in Eq.(1%) above if we assumé, an exponential fqrm- fo.xl-_'cz‘l :and Cphz
let EI(W)E lql(o) | exp (-__4‘;1 w|) and (W)= exp (- oh|w|}. Then

: o
DU 1
£t =g

o‘l_‘nga’ [l+( ] -'.

where b= b1 +0, 0 th/(c/2) and the parameter o & g% =

given explicity in terms of radar system parameters by Eq. 22 of [1]:

Klq(0)] is

- 3.2
o= Aqu_/un) R, where o =mg_ /A%, Also from (1], App. 1II,
.q,l R3 lzR /{ Ac. The elements {c ] given by(20)may now be stra1ght-

_forwardly, albext somewhat labormusly, calculated by residue mtegratlon '

. __'nF. (Zgoalﬁ é-Ir— 1 '
L oTu “'4’2“0 I S
c = O (go""lB ) Cm. ada+3a41
C227%n N ¢ "2 3 3 :
o TI.J) ‘no .. a(atl)
| q . 2 |
L e ¥ (°’1ES ) R
o 7337 20 men /T2 T3
Cre=%3= 9%
G @ (go 1 ) JRO 1
— L ] ; '
23 2 ﬂz_¢3n02 Y

L2 L _
“where a = 1+. g, arlB /ﬂ}q).no ; .recallA B= ?n&F/f}F.



Defining a= g(; § BQFJTrqmo =2 goozlfiF/ ¢T]o, we may write the

. {cij} in the form

C =£ - az-l = _i.: . a-1
- . ’
e a(atl1) ¢ aL(aL+1)2
P R € 1 af+3a41) 05 (a-l)@ -a’+ 3atl)
22 44 a (atl) 49 a3(a+'1]2
c = ;cfz az—l
3 ¥
32 .
C13=Cy3=0
and -
c -2 . @*nE’-za.) F @-nE’-2a-1)
23 4g, as(a+ 1) g, a2(a+1)

Inverting this matrix to find the covariance matrix of the efficient

estimators, the diagonal elements are

2 .
* +1
Var (T )= —E’ aatl) _ (21e)
o a a-1
(a-l;1)3 .
var(o)= 2. X | (21)
= a-1 | _
and | 2 o
« B 3. .2 :
: * - + 3a+l ‘
Var(g )= o =R (21g)

As an application of these results, consider the choice of best pulsé

- modulation bandwidth QF s which enters these error variances only via

2 ~ ) .
a =1+ a./OF: a can equivalently be chosen, then, to minimize one of these



" three forms. It is easily found algebraically that a=2 m{nimize-s both
* # *
'Var(o') and Var(g_) anda= (3+/17)/4~1. 8 minimizes Var(T_); further, a
A.. - * .
choice of a= 2 increases Var("ro) by less than 2%. . Thus the choice a= 2 is

=62(0)/c 2 is seen to be
8 n . .

' " a very good one; then §/nF= (2ﬂf*(0}6F/no)/2nBF

(very nearly simultaneously} optimally 3.
~ This choice of a is allowable. provic-ied;roughly, the signal-to-noise
ratio is large enough so that the quasi-stationary approximation remains

valid: for this we must have 1/Q, << 6. Since 8/Q =3 (for a= 2),

1/Q=3/a = (3/2)(110/0'3]?)6: thus, more precisely, we must have

As will be seen below, this condition is easily met in pré:ctic:e even for a

: satellite vehicle. — - ——— e

find =

With a = 2, we
1 ’ : B
# _ o 2 _ .
Var(t ) =9 (T&F) (¢;+0) , o (22a)
x 27 (o 2 o
Var(o) = —- (E’é") (¢, 9 (22b)
F : .
and ' : ' ' =
, - EEQL_:L{(E_). |
c 2 2 of ’ ‘ : w7 (22¢)
g F

the correlation coefficient of the efficient estimates of sea state ¢ and
‘ ‘ %
amplitude go is, in magnitude, 1//33, a rather low value in that Var(o ) and

Var(g *) are increased by this correlation only by the factor (33/32). .
o - R



Evaluating the approximate forms given by Egs. 6 .-for this particular

_‘f* we find

b

Far(t T o 2 - (23a)
Va.r("ro) o 16 ( UBF) (¢1+ g ) r

# 04 (o z 23b
Var(o') ~ = (;E—F) (ot 0)° o __ (23b)

2 3
F
g,

Var(g:l_ 32 ('ﬂo ) 230)

and p2= 1/4: here A = ¢ = TrEF $/4n o corresponding to unity SNR was"_used.
: op o |
The parameter dependencies enter identically in the exact and approximate

. forms. Comparing the error standard deviations, the numerical £étqtors,

in order, are in the exact calculation (3,3.7, 2. 4) and in the approximate

calculation (4, 4. 6,3.3): these are in good agreement.

A Specific Exact Solution. - Suppose that the récepﬁon time is large
relati_ve to the time over which the returned pulse is non-zero, a good
approximation in practice: then in Eq. 4, th‘e integral equation that determines
the kernel function k(tl’ tz) of the optimum processor, we may set T = (-ﬂ;,@].

' Taking the two-dimensional Fourier transform (dencted by a déuble tilda) of

this 'equafion we find

n vtk [ K -ofwvde = B v, ce<u,v <
T]o (u, v o . S(u,- ' v = S(usv)" u, v . (24)



From Eq. 8 of [1] we have (temporarily set Tb =0)

ﬁs(u, -v) = B (w-v)F (WF (v)

where

Pla-v) =K g (a-v) 0, (75 ) -
Again assume 2m &F s
: = , lul=a_rz,
F(a) =) |
0 , Jul> Q./2; ) : (24a)
then Eq. 22 becomes
- q./2
7 ) (T ¢!
low r ~ o o~ F 'F
B kl(u, V) +‘J p (u-w)kl(w,v)dw = p(g-v),u,ve {- T ) -. (24a)

-QFIZ

o =]
where kl(u, v} E k{u, -v).

The integral equation (22a) satisfied by ¥ isofa type well known in

1
communication theory (s ee,., e.g. [3]). Thereisa straigthorward meth.c_)dr
of solution ﬁvhen ’5 is £he {one-dimensional) Fouriér transform of a rational
function; thus any reasonably behaved q * Py can be approximated by a
rational function and the corresponding k found - in principle, though the
calculations may be tedious.

To apply this method here assume that 7

Sw=ae ¥, e w< e

theﬁ' pit) = (a/mp)T 1+ (t/¢)z] which roughly approximates a possible q * Py’

it would be desirable perhaps to model the usual asymmetry but this requires

more complication. The solution to Eq. 4b is now easily found by adapting



the solution for an interval {0, QF) found in, e.g., [1] ,. p. 388, Eq. 1.46:

K(u) K[-v) , -0, /2<u<v<0/2,

Kww= | . - (25)
: T K(v) K(-u) , -QF/Z <y <u < QFI’Z,
where | ~ .
. Bagrzra L, -Bagizrw
K(u) = VD [ (B+ ¢)e + (B - e 1,
| B0 _fo

. _‘_. 2 ~ A 2 F Fo,-1
D = gaf’{n BT(B+g)e -{B -¢)"e 1} 7,

2 2 l = )
and B = ¢ +2Be /M o Of course k itself is now readily found and further
one can show (by an easy argument using the integral equation) that when
To + 0, -ifr C}{u+ v)

i - < < <

e K(u)K(v),f QFIZ u<yv QFIZ,

'If(u,v) = {

-iT (ut v) _
e ° K{-v)K(-u), -QF/Z <yv<uc< QF/Z.

L)

~ Suppose 5QF>>1: then

ﬁ(u, v};ﬁ _%Q—B——A—E- . e"BILﬂ' V‘ '_QF/Z'-': u,V< QFIZ.
n B (¢t F) ' '

" 4E_u
. Since BZQ 2 ¢2€1F2 + ———n-F—- . ¢QF , it is sufficient for this case to
. o

obtain if either

2

2
q;an ~ a2 L2>> -
| . D -

that is, the smeared returned pulse is long relative to the transmitted pulse

o resolution - or

cpa_ = am s —— = >>q
F y p
o o F

2t
4116Fu o o
n



that is, the proéuct of SNR and ¢/p , is at least the order of umty (In
practical designs contemplated these conditions are met. ) |

.‘ ‘We know from [1] that the calculation of Q(z) is realized by the
con:[igﬁration shown in Figure 1 - because ']: has the some functional form

~ -
as RS which_i_s_ﬁ (aside from the multiplier no 1) in the threshold case

| which was discussed there. The final linear, time-invariant filter has a

transfer function

2 ar oy
n B+ e

_in particular its bandwidth is about

> n

a-1 o 1/2
=

B~ gep )

The result agrees with the same results obtained under the quasi-stationary -

approximation.
It would be of interest to use this precise result for calculation of

performance limits and hence the best bandwidth setting for any SNR.

Nonsymmetric Wave Height Distribution, - Although it is often

reasonable to assume a normal univariate density function for the random
gross wave height, it is known even in simple cases that the density function.
‘ “is only E_Lpproxirhately symmetric. 11‘: .is clear that a nonzero mean can be
completeljr ambigous with the geoid parameter: see Eq. (1)! Such a

: nohz:ero mean may be associated with a large area current, We therefore
consider a zero mean, nonsymmétric distribution that is a small perturbation

from normal: the Gram-Charlier series [ 3] when truncated gives a



_convenient representation: . thus assume

22
-oht /2

» - ) 3
tpha(t) e (1 -194at )

. , |
where 94a.E E {h”}/3! will generally also be an unknown parameter. We

, -+
therefore consider the efficient joint estimation of 8 = (To, g, go, 64),

o 3 ) . . _ ] 3
94 = 94a/(c/2) . It will be convenient to write L‘pha(t) = Cph(t) (1 --194’: ) where
Cph(t] as before is the normal characteristic function {exp (—UlftZ/Z) and

keep f and f, unchanged.

The matrix of cij's is straighfforwardly calculated to be the symmetric

matrix

M(1)+942M(4)
. 0 G-Z[M(ZHGZM(S)] o S
2 4 - =
c=Qg o 2 1 2
o 0 -~ M+ e, M4)] —, [+ 6, M3)]
go o g ,
o
M(2) -640_M(4) —= M(3) M(3)
. _ o B
Note that if the true (unknown) value of 64 is zero then C becomes
M(1)
= 2 2 ' , o ’
o™ T8 0 o M(2) | )
0 .Zmqa) /g’
. _ . g o]
/ ‘ 0

: _ - M(2) 0 c M(3)



i
Then the correlation matrix of the efficient estimates is

1
M(1)
1
2 2
1-0,, M@0 |
g 0.2/MQ)0 '
G 5o "23 Lo, .2
2 2 o
17023 1-%s
, .
2 L, 2 M()
14 " F14.
where
I VS
14 MO)M(3)
and

2 _ M@)°

P23~ TH(OIM(2)

The variances of the efficient estimates are, of course, the diagonal elements.

In the more interesting case when the true value of 6, is not zero we

4

is small by ignoring the 6 2 terms to ease the

may use the assumption that 0 4

4

labor of calculating the inverse C-1 which may then be approximated as

c'1+ 0.C “1C ¢! where -
o 470 1 o —— .
0 ) .
=d g2
Cl go

0 -oM(4) . M(3)/g_ 0©



-1 - . )
It is found that CO Gl Col has zero diagonal elements and hence the variances

- of the efficient estimates are unchanged; that (1, 4) and (2, 3) elements are

*

*
and 6, are

zero and hence the correlation of the efficient estimates T 4

' * *
unchanged as with the efficient estimates 0 and gy and that the (1, 2), (1, 3)
and (2, 4) elements are nonzero so that there is at least a weak correlation

between all efficient estimates.

Summarizing,
* 1 . 1
Va.r('ro ) = 2 . 2 ¢ ! )
- 1
g, 1-0,, M(1)
# 1 1
Va.r(64 ) = 2 * 2 1 ’
e, 1-p., M(3) -
* ,
Var(o ) = L > ! * L 5 ,
Kng 1- p23 M(2)o .
and : _ | ¢ 2
% 1
Var{go} = 2 L ) y —2 .
. q_go 1- Pog M(0)

~l. 2 Pt " .
- Example - Suppose that |Q(w)| = ] a(0)| . exp (- q)zwz} co that
2 “W2/2v2~ e g
e . .

|¥’(UJ)|_2 = o

where o = K]?{l (0)] and V= [2(§+ ¢2}'_]'1. We then have M(0) = alzfz““nv , -

2 : : .
M(l) = cxl ,/‘Zn'v . Vz , M(2) = 30:12\/277'\) . V4 , and M(3) =15 alz\/va . v6 .

The correlation cpefficients are then 0142 = 9/15 and 0232 =1/3 and
2 -1 2
(1- 014) = 15/ 6 and (1 - p23) = 3/2: these are the factors by which the

-various efficient estimates variances are increased by their correlation.



If the sighal pulse Bandwidth is chosen optimally we have seen ad -

; = 4g f +h
 opt (EF/ g, ono) ut here

: ir~ 1
f(0)=5;jf(w)dw ==y
~1
T = v me . T
so (@g ) 41’300!1 1/ Fgo hen
« AN eV s 1 20 o
F8 Ty N Fe
v
x4, 15 ) e
Var(94)-—‘—“" & 2 7 " : 6 '
‘./T'I'E,Fgo 150:1 ﬁﬁ‘v 6/ 2 SF @V f
. Y - .
N AT i _ 4 o
Var{o )= ————"* 2" 7 2.5 a2t
. v A"
\/FE',Fgo o i 3&1 TJ/Z BFoz o
and 2 - o2
y o2
_ 41}0 o!1 3 go 12 nogo
Var(go)— iy
f'rTE',Fg JZm oV 2 /2 Ep @

‘These results can also be written in the form (in part using the

definition of V)

M

: % 20 o 2 2
= . L2 +
Var(’ro) p— e o [2{c 4)1)3 s
F
. m 3
%* -4 .o 2 2
. Var(e )= . J2e7+ 6] g
: 4° en/Z C_« 3!
F | .
X n 2 ‘
Va-rz(o ) - 4 . ° 20+ ¢1/02)j?' ’
.o /2 e _«
and %
Var(go ) - 12 . no
g 2 2n/2 e o



. Threshold case. - In the " threshold case™ (in which the estimates

can have arbitrarily good accuracy) we can readily find the structure of the
best estimators and calculate the (C rétmer-Rao) lower bound on the

estimator's accuracy. From [1] the best processor calculates the form

' | - 2 |
Q(z) = =55 a(-t)* p, (- 5 | F-tpezi | | ;
2“0 ;tz To

the realization of this calculation by a '"mixed integrator'' processor is

discussed in [ 1]. We find, by direct calculation, assuming geoid and sea

/—.
state unknown, '
~ 2 2 :
c, =— [aufav |R (w,9)| "), . (26a)
11 2 0% Vs ,
(2 'no) o : . Lo
.4 ~ 23 |
G, = | Idujdv |Rglu, ) "), (26b)
‘ (2mm, , :
and _
4 % NS 4
c,, =—— u[duj avR (e, v |7 =5 ) (26¢)
{Zﬂ"qOC) C .

Here we also assumed that the univariate sea height distribution is normal

2 = . .
[4], of zero mean and variance oy, R is the two-dimensional Fourier

5 .
_—iransform of the sig;éil covariance function RS. Thus 1]}

u+*;r -1(u+v)"ro

o2 )¢ | ,

. R (u,v) = K F) F(-v) G0 B (

where, then F is the signal pulse spectrum (Fourier transform) and ©_ is

the univariate characteristic function of the random sea height,



We note immediately that since the left side of (-25b) is real, the right
side must be zero: that is, the efficient estimateé of geoid and sea state are
uhcoi'.1-elated! Note also that only the modulus 1F| of the signal pulse
spectrum enters, then, into the accuracies.

If we assume the signal pulse spectrum modulus form given by (20)

' . r 22,2
and ]_q(u )|_ = !q(O) exp(-q:lu /2)! , then we can calculate

_ 2ol 2 :
- F '
“n "( nd@“) Yu® N ‘-
and ' i
. 208 2 :
SR
€ =(z) - (c/z) 223
. mn AYE .
0
"~ ~2 2.2 .2
wherea-—:—vQF, v EBcn /e +¢1 ,asK!E’;(O)!
2 n -3%2 B
Y, (3) =— [a¥(a) - 2(l-e )] ., - (272)
1 2 _
a :
A _ 1 2 2% i
¥,,8) = =5 138 w8) - 8[1-(14d"/8)e " 171, (27b)
'5 .
" and, finally,
: ) 2
@ = e /% ax,
JO .

Note that since the matrix of elements cij is diagonal we have, as

-

| _,,aforémentioned, the effigient estimates 1% and (dnz)* uncorrelated and their
- error vafianées are just the reciprocals of (26a) and (26¢c) . These forms.can
now be used to make inferences about good system design just as in [ 1].

For example, note that the pulse modulation bandwidth Q. enters forms

“(foa) and (26c) only as 2 :’{pr in the arguments of Yll andez, resp.



" Uncorrelated estimates. - We have, in the course of the above
cal;.:ulations, showed tﬁat the efficient estimato‘rs- of geoid and séa state are
‘uncorr_elated when the univariate probability density of sea heigh is Gaussian.

We.n_t.mlr- show fhat it is the proiﬁerty of ev‘e-nness of the dehsiﬁy.fﬁnction
that is sufficient for this property of the efficient estimates, (We are still
assuming the threshold case.)
Recalculating (3) using (5) for an arbitrary characteristic function
. tPn(“) = ¢’n(gnu), the required derivative acpn(u)/acn =u fp’ (o‘nu) =u :pn"{u).

Then we may write

G, = '(Zﬁn ) J' du G (u) fdu G(v)H(u-v)

where Glu) = IF(u})I and H(u) = |q(u)| mh(clz ) © '(C/z) u2 . Setl eqﬁél to

i times the double integral; then by Parseval's theorem we may write

=i o |® Hba.

-
In what follows denote the real part of a complex-valued function F by FR

and the imaginary part by FI.
We first note that since, in view of its definition, G is real, GR is
2 -
even and GI is odd and therefore I_Gt 1_2 =Gp ¢t GI 2 is even , Similarly of
t t

real implies | a‘z even,

We also note that the realness of P, implies @ is even and
: R
@ is odd (p_= 0 if and only if p_ is even); hence o'  is odd and @’
n n n ng
r ’ H 4 H f‘l = :
even and so fo © '}R is odd and !'cpncpn }I is even ({ oo 1 0 if and only

if p_ is even).. Thus ﬁR is odd and ﬁI is even, implying H is purely



jmaginary - thus checking that I is in fact real - and it will be odd if and

only if P, is even.

© Thus finally I = ~ r‘ G(t) |2 HI(t)dt will be zero if I—II js odd which is

true if and only if pn is even.
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APPENDIX

It is of interest to review the situation when the scattering mechanism
is not random so that a signal known except for delay and si)read is received

in white, thermal noise. The well-known theory [37] for this model gives,

e. g. ; ] )
, . . . az )
12 STy Re I S (w555 Swdw - A
0 - h
where
c’ ) ' .
S(t) =} F{it-1_-n} p (Snidy , : (A. 2)
so that
-iw T : :
S(w) = F(m)cp ry /2 . - (AL 2a)

Again, as above, assume ¢ (w) =% (g w): Then 3w (W/3c =wp o w =wyp (v
h h h h S h &k h

3 2 iwz -iwT
— - _=_ . pp W
o7 oS == T Fwl g "e
© h
and
o
C 1 Rel{ IF(w)l cp( L, (A. la)
12 Z-n--qo J /2 h_ c/2 c[Z
It is immediately clear that if cph is real - which is true if and only
if P, is even - then C12 = 0: that is, the efficient estimates of delay and

spread are uncorrelated, We have already observed that Refi ah-&)hl 1 =
L ’ . - . . " = ".' . .
(_cphq:h )I is even and zero if and only if pn is even.

We can also calculate readily

2

C, =-Ef

‘11 54003 =5

: fwzlf‘(w) cph(w) l_2 dw (A.3)
éfro' 0 :

and



2

3 1 4,7 2
Cpp == Ef—S g ianlss—— - i[u [Flg ! @ (a4
a(ch) 0

2 | :
where we have assumed cph(w) = exp(-chzw /2), a normal characteristic

function.

If we assume, for ease of calculation,

~ -w?/2p 2 --
1F(w) |= ./ aF‘ e , (A. 3a)
-then. | '
c - ‘r . 1
n 3 2 2 .3/2
: 2
Jeamnge T [204/050, )]
and . _ .
B‘ -~
F 3 1 g
: C.. = - — (A, 4a)
. 22 = 4 2 2 .5/2
Jznnoch ff2(1+1/ﬂ,F o, )]

The essential dependence of these forms on QF is shown in Fig. 4.1

It is clear that (_, a small integer of multiple of llch essentially

F

achieves the maximum value in Cll and sz insofar as they depend on D_F.
In this the results agree with the results for geoid and sea state estimation

in the threshold case,



Figure 1. -

Figure 2, -

Figure 3. -

Figure 4, -

Figure 5, -

‘Figure 6, -

LIST OF CAPTIONS -

Geometry of radar altimeter., The coordinates are (x, v, 2},

where the x and z directions are the vehicle velocity vector

v and the local vertical directions respectively. The antenna
aperture is A and the nominal antenna pattern B has nominal

beamwidth B8 ; F is an instantaneous radiated pulse position.

The geoid G and sea surface o are separated by h(x, y); the .
geoid G has least range z -Ro at (x=0,y=0).

Realization of optimum processor when preprocessing SNR
is small. A is a bandpass filter matched to the complex

- modulation F, B is an envelope-squared detector, and C and

D are lowpass filters matched to q and Py’ respectively.

We1ght1ng function wit)= £ _(t){n _/B+ f, (t)] for specific
f, as a function of X = f 0)/ 'qolsl}

The weighting functions { vi(t)} appearing in likelihood equations.

Dependence ofC/ (a) on a, where a2 =1+a/0.; (see Eqs. 2le,
. F
21f, 21g). ‘ . ‘

~
hY

In

Q

A ) A A
Dependence of ru(a) and rzz(a) an a P



Fig.1.Geometry of radar altimeter. The coordinates are (xy,z),
where the x and z directions are the vehicle velocity vector v and the
local vertical directions respectively. The antenna aperture is A and
the naminal antenna pattern 8 has nominal beamwidth #; Fis an
| instantaneous radiated pulse positian. The geoid G and sea surface
! & are separated by fi{x,y) ; the geoid G has leastrange r = Rq at
{x =0,y =0),
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Fig. 2. Realization of optimum processor when preprocessing
SNRis smail. A is a bandpass filter matched to the complex modu-
lation F, B is an envelope-squared detector, and C and O are low-
pass filters matched to g and p,, respectively.
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